skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chambers, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In deciphering the global signaling capacity of FERONIA receptor kinase, Liu, Yeh, et al. discovered an extracellular phase separation process driven by FERONIA peptide ligand RALF-cell wall polysaccharide pectin interaction, which leads to cognate and non-cognate receptor clustering and promiscuous endocytosis as a coping mechanism in response to environmental stressors. Highlights Cell surface pectin-RALF1 phase separation recruits FERONIA-LLG1 into condensates RALF induces FERONIA-LLG1-dependent promiscuous receptor clustering and endocytosis RALF1-pectin molecular condensates function as surface sensors for stress signals FERONIA-LLG1-mediated global endocytosis ensures plant resilience under stress 
    more » « less
  2. Abstract Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses.Brachypodium distachyonSECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated inB. distachyonroots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression.SWIZoverexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics. 
    more » « less
  3. For quality, interpretation, reproducibility and sharing value, microscopy images should be accompanied by detailed descriptions of the conditions that were used to produce them. Micro-Meta App is an intuitive, highly interoperable, open-source software tool that was developed in the context of the 4D Nucleome (4DN) consortium and is designed to facilitate the extraction and collection of relevant microscopy metadata as specified by the recent 4DN-BINA-OME tiered-system of Microscopy Metadata specifications. In addition to substantially lowering the burden of quality assurance, the visual nature of Micro-Meta App makes it particularly suited for training purposes. 
    more » « less
  4. Abstract Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell–cell junctions. In this study, we report a fluorescence lifetime‐based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand–receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement‐based DNA tension probes to image E‐cadherin‐mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E‐cadherin and N‐cadherin tensions during an epithelial–mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes. 
    more » « less